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ABSTRACT

A suggestion is made for the determination of the Farth gravita-
i}
tional potential up to the quadropole approximation in a local determination
via satellite observations. The method introduced enables one to establish
also the distance of the center of the Earth to the poesition of the satellite
observation station. This would imply that observations from severagl stations

could be used to fix the Earth center aund consequently to make observations

on the shape of the Earth. A flow diagram for computations is also presented.
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1. TBE POYENTIAL_OF THE EARTH UP TO QUADROPOLES IN LOCAL GRAVITATTONAL DETER-

MINATION VIA SATELLITE GBSERVATIONS AND THE DETERMINATION OF FARTH SURFACE

EQUATTON AND MASS,

In the quadropole approximation the potential of the earth may be

written as

GM GR . '1; 1 3 (XiXJ)
U= —+ = =G T Q:i————+ . .. 1
r 3 2 i:jz’lQL] r? ’ L
where
= talx! d3"
p = [L'p(x"dx
E.Mic ’ (2)
and
= 12 1yg3
Qi = J‘(Bx]!_xg - x"Tey Pk (3)

with M the mass of earth, G the gravitational constant, r the radius vector

~

emanating rom some fixed point mnear the center of earth, p(x') the density

of earth with x' representing the collection (x', y', z') and x_. the vector

c
corresponding to the center of mass of the Earth. The Q's may be interpreted

in terms of the tensor moment of inertia Iij'

-
|

t.-t -t .‘\3'l .
ij fxixjg(x yda x s (&)

as

1 + 1
Iij =7 Q57 A Qkkélj ’ : (5)



(2)

where
Qag = Q1 T Q2 Qs

Thus knowledge of the Q's enable a determination of the I's to be made. The

matrix for the Q's and the I's may be written as

3143 31,4 "2(1p; + Ipp)
and

1 1 1 1 1

21 g, T el 32 3Q13
1 1 1. .1 1

(131 = 3012 et T 5% 585 3Qs (7)

1 1 1 1 1
33 323 g9y el "2{333J

In what follows an indication for the deterwination of the proper-
ties of Earth depicted in the approximation (1) will be given insofar as it
pertains to the data obtzined via satellite in a region directly below the
satelltte. One would expect consequently that the parameters appearing in
(1) will change from region to region aud thus to reflect the distribution of

the gravitational structure of Earth.
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2. DYNAMICAL CONSIDERATIONS 1N THE TDEAL CASE,

If V is the "absolute" velocity of the satellite; v the velocity
~ ‘i' Land

relative to a frame rotating with Earth; w the angular velocity of Earth; and

~

r the radius vector from the origin of the rotating axis to the satellite

~

then
V=v+gxr . (8)
The Lagrangian may be written as
1 :
L=§-m}L-X-mU 5 (9

where m is the satellite mass. The introduction of (8) into (9) vields

L= %rn(z’+ w XTr) - (v+wXxr)-mU ’ (10}
so that the cannonical momenta being defined to be
1.
Pi = 8
ovy
gives from (19)
{ P=myv+aXr1) . (11)
| ~
i The Hamiltonian is defincd as
H=P: v -1L s (12)

so that from (9) and (11) in (12)



(4)

1
H=m(v+yxr): v - E%n(v 4w Xxr)y (v+gxr)-+mU
1 1
=Am(’\L+mX’1\’J) . [X~§\r-§'%>:r] 4+ my

1
!
B

~~
<

ki N—L'“‘Xf) (v - w Xr) 4+ mU

=-;'-m(v2 = (gxr) s (wxr)) + ol .
But
@xn) - @x1)=o - . D,
so that
%= % [v2 + (» : i)z - WPl + U ) (13)

for the Hamiltonian divided by the mass of satellite.

Under ordinary circumstances if all perturbations are ignored fhe
one would expect H/m to be a constant of motion. Thus a set of measurements
Vir Y with 1 = 1,2,3, - -,ntl with n equal to or in excess of the number of
parameters appearing in (1) would enable the parameters to be determived. In
the former case n equations for n unknowns needs to be solved, In the latter
case an appeal to least square methods may be made.

|

B
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3. THE INCLUEKCE OF PERTURBATIONS.

In the event that perturbations are present such as those due to the
moon, sun. plancts as well as atmospheric and radiation effects H/m given by

(13) will be time dependent. Thus

d /u -

—— 1 == F(t . 14
dt im/f () (14)

Hence

£ 70N

fH: HY to

(nly = ;n"’;_zl'i' j’t F(t)dt . (15)

' 1

Now if measurements are made in small intervals of time one would expect that
the perturbing influences of distant objects such as the sun, moon, planets
will be essentially constant in the time interval ty <t <t and similarly

for atmospheric and radiation effects. Consequently if we have in addition

t, <t <tywe have from (15)

2
Y 7N\
fHY _ /H
\m/j3 \m/, *J 2Fft>a ) (16)

so that on the basis of the additional requirewent that measurements are tabu-

lated in equal time (small) intervals

t
ft3 F(t)de = .F 2 F(e)ae (17)
2 B!

on obtains from (13) and (16) the so-called sccond difference equation (ignoring
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Hy - 20, +H =0 . (18)

In an analogous manner one may conclude that if the ¥F(t) is not duly
constant in the t imb interval ti <t < t_+1 then an appeal to third difference
i

equation may be made, namely

H, - 3H, + 3H, - H o= 0 s | (19)

et cetera. The factor 1/m is to be reinstated in applications in accord with
(13).
As in the ideal case we may indicate the minimum number of measure-

ments to effect a determination of the parameters in (1). For the second

difference case exemplified by (18) one has for the iEh' measurement case to
arrange for at least three measurements
Hiip = 2Hi+1 + Hi =0 B (20)

with 1 = 1,2,3,--',n to yield n equations with n + 2 measurements. Thus n -+ 2
measurements will be necessary for the determination of n parameters appearing
in (1). If the number of measurements is in excess of n + 2 least square pro-
cedures must be appealed to.

For the third difference case the analog of (20) will be

e

- =5 - U =
with 1 = 1,2,3,--',n to yvield n equations with n 4+ 3 measurements now. Thus

n -+ 3 measurements will be necessary for the determination of n parameters

appcaving in (1). Again if the nuwbor of wmeasurcments is in excess of n+4 3
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. least square procedures must be used.
Now let the assumption be made that F(t) in the neighborhood of

t =ty is of the form

2+M_(t - t1)2+- Ce o (22)

2

F(t) = F(ty) +—F'(t1)(t - tl)

If in addition

M
=
a

(23)
one sees that

Itl+h
1 Y

F(t)dt

)
~
N
=1
~~
rt
g
[a ¥
~
|

F(th + 1 F'(tl)h2 + FUEE3

2 re
t tF2h
3 p(t)de = ("1 .
It F(t)dt Jt +h F(t)dt
2 1
= e n + 2 Fr ey + Loprge o
1 2 1 6 1
Hence from (15) and (16)
-_ 1 - = " ! : i
\m/ 3 2 T o F(Ode - [ R
1 1

n

Loy 2 gy 3
F (Ll)h + €~}”(L1)h + -

5 (24)



(8)

Equation (24) thus indicates the nature of the approximation associated with
" (20). The smaliness of F'(tl).and h is essential which is essentially main-

tained as indicatqq in the discussion leading (18).

o
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4, APPLICATION TO CASE WITH MEASUREMENTS STATED RELATIVE TO FIXED POSITION ON

SURFACE OF EARTH.

]
Consider the axis of rotation of the Earth to be fixed in space and

let this axis be called Z with unit vector K. In addition call the axis in

the direction of the vernal equinox X with unit vector I. The Y-axis will be

~

perpcndiculer to the X~ and Z-axes with direction J in a right handed system

~

of coordinates. 1In additionbconsider the origin of the rotating coordinate
system (local) to be situated on the axis of rotation and the z-axis to emanate
outward with direction k as unit vector, The x-axis is imagined tangent to
latitude circles pointing in the east to west direction with unit vector i.

The y-axis is taken perpendicular to the x- and z-axes to form a local right
handed system with unit vector j tangent to meridian circle pointing in the

~

north to south direction. Now specify the direction of the z-axis with the

spherical coordinates @o, & relative to the ¥, Y, Z system. The relation-
ships existing between the unit vectors i, j, k and I, J, K turn out to be

{ = in & - s &

i 1’s1n %o ilcos ¥ B

CR—- A oo : z o - ¥ in ©

j= E/cos 2, cos €, + 2'31n &, cos @, E’31n SN s (25)

r—

- ; c oo - CA 4w A
k=1cos &, sin & + J sin 2/ sin @, 4 &/cos S
3
The inverse equations cerresponding to (25) are
- y = K3 b2 > . & 4 et
I=1sin & 4 J cos Iy cos € F k cos ¢y sin 3 s
J = -1cos I 2191“ . cos 4 EJsin So sin 2 (26



Now since the axis of rotation is in the K direction

‘” ~

e=ovk
which in view of the last equation of (26) is
Q= (*'_']V sin @4 -%hcos @0) s
so that (13) becomes
\\l

2 2

L v + (y sin@_ - z cos @)% - w?r] 4+ U
m ° °©

/
{
\

AY

N =

(v + W ((y sin 8, - % cos @0)2 -]+ v

RO et

In (29) it must be remembered that

2 o[ [ayi? fag?
- \dt/ :\dt/‘f ':\df./, 4
r2 = x2 + y2 -+ 22 s

GM GPyx
U= — -+ .

& T r3 r3 r3 2 2 r?
| 1 GQy422 CQioxy  GQo3y G <
L 103" oty Gloyyz oQyye
2 rS I‘S rS I'S

It will be convenient to call

(27)

(28)

(29)

(30)

(3D)

(32)
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Py = a ,
6By = b ,
GP3 =c ! ’
760y = A ’
(33)
7 6Qyp = B ;
%cq33 = c ,
6Qp2 = D ’
CQy3 = E ,
Q3 = F

Consequently from (29), (33), (30), (31)

VAT 2 \ 2 /7. \9
HA_ 1 (/dho | fdyy® , fdzi® - o .
Wiz Ue) Tla) T ¢t sin g - 2 cos 02 <12))
2 .2 ;
g6 ax by cz Ax By Cz Dxy Eyz Fxz
e e T e + + + + -t (34)
r 3 3 3 5 = > 2 r’ >
r = (x2 + y2 + 22)1/2 . (35)

Also it must be remembered that the origin of the local system is presumed

' - . . . . .
located on the axis of revolution and imagined to be "near" the center of mass.
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Cousequently, if R is the vector from the origin on the axis to the observa-

tion point and « the satellite vector from the surface of the Earth,

Hence

" But

so that

consequently,

e ope—

1]

r =R+ o .

~~

r=VR% + & + 20 -

E_.
R=RE )
R-g=Rao-k

=R + ¢ s
NN TR S S

y

x=Cz'X bl

y =« ;
y

Z=Qz .

(36)

(37)

While (35) is useful for the casc when the orbit relative to Earth

is specified and informaticn comcerning the origin of the coordinate system
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is known (36) becomes useful in the event the magnitude of R is not known.
. ~

It will be convenient in this case to take the origin of the coordinate sys-

tem to be located at the center of mass so that in (34)

In addition consider
(38)

R=R0+€

¢ is to be determined. ©Now since

<

where Ro is the mean Earth radius and

> > ¢ one would expect

Ro
ar? . R
—_— = 2R + 2 == = , or
9R R
or 1 I/ g . 5\\
—=—{R+ | , so that
SR T\ R /
1 1 1 o+ R_\
[ ’"‘3“{% i R"‘Q’e - ; (39)
T or, Ty o\ o j
where now
2. 2. .. ,
r, = ¥Rj + o” + 2 R . (%0)

Also note from (37) and above that

D .
= [(y sin 3o - 2 cos 2 )2 - r2] = ~2(y sin &, - z cos 2)
3R © o o



(14)

which would indicate that

e . 2 2 ~ . 2
(y sin @, - z cos @0) -r° = (yo sin @, - z, cos @0) - rg
- 2[yo sin @, - z_ cos @,
/a- RY
+ [ R, + i le . (41)
V0 R

But also

dx _ doy
dt dt ?
dy _ doy
dr  dt ’
dz 4oy
dt  dt

Since one would expect to quadropole terms to be quite small one could ignore

3

the variation of terms of the form _éi r ° appearing there and simply imagine

'

1
o0 Xg 5 Yg

the r's and x's, y's, z's there to be ther s, and zo's given by

(40) and (37) with R replaced by Rj. Thus (34) becomes

\ Fam N 2 (a3 2 { dos \ 2 :
[uy 1 :dv-x\ fday . daz 2 .
e Bl 8 Byl " -y e m ; @ -z e
\m T2 {Kdt J + Rdt / 4 Ld +-J‘[(>o sin @, - z cos 05
214 1
- ro]l + Eo - [fg(Ro + az) - 2m2[yo sin &, - 2z, cos &
To To
22 2 . . :
+ (R +oz)]le + AAQ ys  Czg N Dxyyve R Eyoz, j FX,z,
° > r> o T o2 Lo
o o ) o o o

2
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where
O = 1iax + j oy -+ koz

is the position vector relative to the surface of the earth: z-axis upward,
x-axis tangent to latitude circle in east to west direction and y-axis in the
direction tangent to meridian circle in the north to south direction. &, is

the polar coordinate of measurcment station

[, e

r, = \/p\% + ,;52( + o;% + v% + 2R,
X =
[e) X
(43)
Yo = Oy
z, = Q, + Ro .
Thus (42) becomes
7 HN 1{ /dyx\‘z "dgyx ? da, ? {
: —_ ) = - i i + f o m— + ' &) sin I
m/ 2 \dt / \de / dt / w Ly ©
- 2 8 ¢ 1
- (&, + R,) cos ) - roll 22— (R, + )
rO r0
- 20" [y sin 3, - (9 + Ry) cos B+ (Ry + @, 1}e
2 2 2.2 .
Rk By oG 2 ady | By(Ro 4 ay)
. -+ T T
) 5 5 5 5 >
r) ro r] r, Yo
(r< o)
S R ) o (4!:')
r)
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with r, given by (43) and wz is the angular velocity of Earth about its axis.
Equation (44) is most suggestive. . It indicates that we may regard Bos €5 A;

B, ¢, B, E, and F as constants to be determined. These all appear linearly in
(44). 1In general g, is presumed known. Nevertheless it may be of considerable
interest to effect a detcrmination of this constant. Thus, in effect, know-
ledge of the position vector, the position velocity relative to the surface of
the Earth will enable one to estimate the mass of the earth or Newton's gravita-
tional constant thru g, of (33), the distance of the observation poiﬁt from the
center of mass of the Earth fhru ¢+ R, =R of (38), as well as the quadro-

pole terms. Consequently the distribution of measurement stations over various

portions of the surface of the Earth cculd be used to determine the equation

of the Farth's surface since one would expect € to vary frowm point to point.
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5. PREPARATTION OF POSITION MEASUREMENTS RELATIVE 10 FIXED POSITIONS ON SURFACEK

OF EARTH CASE FOR NUMERICAL ANALYSIS.

ti)
If at least 8 -+ 2 measurements are presented for the « and dx/dt

~ ~

corresponding respectively to the position vector and velocity vector relative

to a point on the surface of the Earth and the subscript k denotes the kEh set

of measurements then if in addition the definitions

1 \
Ly = (T) ; (45)
0, k
Ly, =2 (R + o) - 202[%, sin & - (o, + R 9
2k = 3 ot o, w™ (% sin €, (o, O) cos 9
+ (R, + o)}y ’ (46)
/QXE
Ly =1 75 ; (47)
\\ro/k
[
Ly _=:! - l s 48)
\To/y
| /kRO + wz)z\
L. = ! (49)
' 2N 5 / ’
© k
’ \
o o)
. AN
Lo = 5 ) ) (50)
v To /
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: ¢ Y\
L _ Oy(RO + QZ_}_ \ . 51
7k = 5 ) s (51)
(o] // k

\
(&x(ho + o,) \
Lgk = | = | ; : (52)

1 fae 2 faw N2 faa, N2
Lo = - = (l— | + | =2 + i — | + ' [(a, sin ©
9k 2 {*\ t,"l \ dt/' ] t /} w [( y in Yy
- (25 + Ry)cos @o)2 - rg]}k s (53)

Equation (20) becomes cquivalent to
(L1, urr = 2Ly pan * by 080 + (o ke = 20g jap + 12,10
@, 7 2, g 0A Ty g 7 2Dy ke T Ty g )P
s 2 7 2hs, ke s 1 ICF (bg g 7 2l ke L )D

Ly a2 7 2y g Y L7 F (g g - 2lg g T Tg, i)

= (Lg, 12 = 2Ly 1 F Ly 1) ; (5%)

upon noting (44). 1In (54) if 8 -+ 2 measurements then with k=1, 2, . . . 8
one obtains 8 equations for 8,1 € A, B, C, D, E, F. 1If max k > 8 a least

square anslysis nceds to be made. In order to expedite the analysis consider

the definitiouns
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Ni,k = Li w2 © 2Lg, k1 + Ly (55)

where i = 1,2, - + - 9

Al = go )
A2 = € 2
A3 = A ’
A4 =B 2
(56)
AS =C b/
A6 = D )
A7 = E 3
A8 = F s
so that (54) reads
8
_ZlAiNi,k =Nk . (58)
1:

The task is tec determine the A's. If max k > 8 the normal equations for the

determination of the A's may be written as

g y max k max k
Ay T N, N.,.= % N, N,
P 0 ) P TR ) (59)
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Cwith j =1, 2, - - - 8. If the matrix elements

i max k
s s = Z, . N .
}il:J k=1 Nl,k:\_])k

(60)

is associated with the matrix M, and the row vector V has components V. given
by

max k ,
v kil Ng 1Nk , (61)
the normal equations (59) may be written as
Ay = T , (62)
where AT is the row vector (A1’A2’ R A8) Since M is a symmetric matrix
(62) may also be written as
MA =V , (63)
so that
A= by ) (64)
for the column vector (56). If max k = 8, then (58) has the solution
N\
[\
[ T2
= ¥l Lo (65)
*\ j
/
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with
/£ - \ T
N1 N2 © Ny,
N2,1 N0 N2, 8
N = b (66)
' ]
\
J J . . . H
\Ng, 1 Va2 Vg, 5/

where T denotes transposition.
A flow diagram for the calculations follows using the definitions

and references to the above equations.
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Read ALPX(I), ALPY(I), ALPZ(I)
VELX(T), VELY(I), VELZ(I) ///
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Print ALPX(I), ALPY(T), ALPZ(I)
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Print RZ(I)
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Read NX
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L(I,K) = 0.0

N

TN

Read ALPX(T), ALPY(1),
VELX(I), VELY(I),

ALPZ(T)
VELZ (1)

N
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(25)

1]

30
1, 9

K=1,

1t

~

[T U S

L(1,K) = 1/RZ(1)

S S,

SINFT)-( (ALPZ (2 )4R)*COSFT)+(R+FALPZ(2)))

L(2,K) = ~((1/RZ(2)%%3,0)%(RFALPZ(2)) ) -( (2. 05CHEGA*#*2 . 0) % (ALPY(2)%
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hA

i
| 2
L(3’K) = <ALPX(3)**2.O)/RZ(B)?’::’:S_O ;
]
\’. m— e
L(4,K) = (ALPY(4)%%2,0)/RZ(4)%*5.0

L(5,K) = ((R+ALPZ(5))*%2.0)/RZ(5)%*5.0

Vl

L(6,K) = (ALPX(6)*ALPY(6))/RZ(6)%%5.0
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L(f,K) = (ALPY(7)*(R+ALPZ(7)))/é2(7)**5.o ‘

S PP |

L(8,K) = (ALPX(8)*R+ALPZ(8)))/RZ(8)*%5.0

'3
N R 1 e A 2 A < s YA e 3t o A s 3 3 05 o N :
T g N R L e S e B €245 LA ST,

......

+(OMEGA**2, 0)+(ALPY(9)*SINFT) ~(((ALPZ (9)+R)+COSFT)*%2.0)~RZ(9)**2,0)

bty et e

o p—

V X
: AN Go Back to Do 10
/ y (until data sets
: depleted)

/




o p—

T (28)

N2

40

i)

I1=1, 9
K=1, M
N N

Print L(I,K)
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50
1=1,9
K= 1, X

N(T,K) = (L(I,K+2))=(2.0%L(I, K+1)+L(L,K))

v

Print N(I,K)
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N(J,K) = N(X, I)

M(L,J)

it

N(T, K)AN (I, K)

P S I TWT 17 S gt s 3n W S Pt &+ Pkt AN Cmamneat riTn Th s AR
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RN, S,

Jreates srarmre cea oo

T e T e

VEL(J) = N(9,K)*N(J,K)

Print VEL(J)

AMINV(1,J) = 0.0
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v
~

Read AM(I,J) )

\i"

0.0

AMINV (I, J)

AMTNV(I,J) = 1.0} Yes I£1 =3 No Y 80
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i)

)

X
Read VEL(I)

(

)

(

i

!

—~ i

L |

- M
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o Z |

> lllll\..
! %

; |

o {

r N

. ‘

J=1, W

.
e
b3

If I=1J

| \/

RDIV = AM(I,J)
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AM(I,KX) = AM(I,K)/RDIV

——v—r

AN

PR, L

MINV(I,K) = AMINV(I,K)/RDIV

" (35)
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Print AM(I,J)
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Print AMINV(I,J)
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X(I) = AMINV(I,J)*VEL(J)+X(1)
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Print I, X(I)




